Modern C++ for
Computer Vision and
Image Processing

Igor Bogoslavskyi

UNIVERSITAT

Outline

Classes
Polymorphism

I/0
Stringstreams

CMake find_package

Polymorphism

From Greek polys, '"many, much"
and morphe, "form, shape"

-Wiki
= Allows morphing derived classes into their

base class type:
const Base& base = Derived(..)

When is it useful?

= Allows encapsulating the implementation
inside a class only asking it to conform to a
common interface

= Often used for:

= Working with all children of some Base class in
unified manner

= Enforcing an interface in multiple classes to force
them to implement some functionality

= In strategy pattern, where some complex
functionality is outsourced into separate classes
and is passed to the object in a modular fashion

Creating a class hierarchy

= Sometimes classes must form a hierarchy

= Distinguish between is a and has a to test
if the classes should be in one hierarchy:

m Square is a Shape: can inherit from Shape
m Student is @a Human: can inherit from Human
= Car has a Wheel: should not inherit each other

m Prefer shallow hierarchies
n [ehliengined Prefer composition,

i.e. including an object of another class as a
member of your class

https://google.github.io/styleguide/cppguide.html#Inheritance

#include <iostream>
using std::cout; using std::endl;
class Rect {
public:
Rect (int w, int h) : w_{w}, h_{h} {}
virtual void Print() const {

cout << "Rect: " << w_ << " x " << h_ << endl;
}
protected:
int w_ = 0; int h_ = 0;
};
struct Square : public Rect { // Should be a class.
explicit Square(int size) : Rect{size, size} {}
void Print() const override {
cout << "Square: " << w_ << " x " << h_ << endl;
}
165

void Print(const Rect& rect) { rect.Print(); }
int main() {
Print (Square (10)); Print(Rect (10, 20));
return O;

3

Using interfaces

= Use interfaces when you must enforce
other classes to implement some
functionality

= Allow thinking about classes in terms of
abstract functionality

= Hide implementation from the caller

= Allow to easily extend functionality by
simply adding a new class

#include <iostream>
using std::cout;
using std::endl;
struct Printable { // Saving space. Should be a class.
virtual void Print() const = 0;
i
struct A : public Printable {
void Print () const override { cout << "A" << endl; }
};
struct B : public Printable {
void Print () const override { cout << "B" << endl; }
I
void Print(const Printable& var) { var.Print(); }
int main() {
Print(AQ));
Print(BQO));
return O;

3

Using strategy pattern

m If a class relies on complex external
functionality use strategy pattern

= Allows to add/switch functionality of the
class without changing its implementation

= All strategies must conform to one strategy
interface

#include <iostream>
using std::cout; using std::endl;
struct Strategy { // Saving space, should be classes.
virtual void Print() const = 0;
};
struct StrategyA : public Strategy {
void Print () const override { cout << "A" << endl; }
+;
struct StrategyB : public Strategy {
void Print () const override { cout << "B" << endl; }
};
struct MyStruct {
MyStruct (const Strategy& s): strategy_(s) {}
void Print() const { strategy_.Print(); }
const Strategy& strategy_;
3
int main() {
// Create a local var of MyStruct and call its Print
MyStruct (StrategyA()) .Print () ;
MyStruct (StrategyB()) .Print () ;
}

10

Do not overuse it

m Only use these patterns when you need to

= If your class should have a single method
for some functionality and will never need
another implementation don’t make it
virtual

= Used mostly to avoid copying code and to
make classes smaller by moving some
functionality out

11

Reading and writing to files

m Use streams from STL
m Syntax similar to cerr, cout

#include <fstream>

using std::string;

using Mode = std::ios_base::openmode;

// ifstream: stream for input from file
std::ifstream f_in(string& file_name, Mode mode);

// ofstream: stream for output to file

std::ofstream f_out(string& file_name, Mode mode);
// stream for input and output to file

std::fstream f_in_out(string& file_name, Mode mode);

12

There are many modes under
which a file can be opened

Mode Meaning

ios_base: :app append output
ios_base::ate seek to EOF when opened
ios_base::binary open the file in binary mode
ios_base::in open the file for reading
ios_base::out open the file for writing
ios_base::trunc overwrite the existing file

13

Regular columns

Use it when:
= The file constains organized data
= Every line has to have all columns

1 2.34 One 0.21
2 2.004 two 0.23
3 -2.34 string 0.22

0O.K. Fail
1 2.34 One word 0.21 1 2.34 One 0.21
2 2.004 two 0.23 2 2.004 two

3 -2.34 string 0.22 3 -2.34 string 0.22

Reading from ifstream

#include <fstream> // For the file streams.
#include <iostream>
#include <string>
using namespace std; // Saving space.
int main() {
int 1i;
double a, b;
string s;
// Create an input file stream.
ifstream in("test_cols.txt", ios_base::in);
// Read data, until it is there.
while (in >> i >> a >> s >> b) {
cerr << i << ",/ " K< g << ", "
<< 8 << ", " << b << endl;
}

return (0);

15

Reading files one line at a time

= Bind every line to a string
= Afterwards parse the string

HEADER
a = 4.5
filename = /home/igor/.bashrc

ER SIE ES

16

#include <fstream> // For the file streams.

#include <iostream>

using namespace std;

int main() {
string line, file_name;
ifstream input("test_bel.txt",
// Read data line-wise.
while (getline(input, line)) {

ios_base::in);

cout << "Read: " << line << endl;
// String has a find method.
string::size_type loc = line.find("filename", 0);
if (loc != string::npos) {
file_name = line.substr(line.find("=", 0) + 1,
string::npos) ;
}
}
cout << "Filename found: " << file_name << endl;

return (0);

17

Writing into text files

With the same syntax as cerr und cout
streams, with ofstream we can write directly
into files

#include <iomanip> // For setprecision.
#include <fstream>
using namespace std;
int main() {
string filename = "out.txt";
ofstream outfile(filename) ;
if (loutfile.is_open()) { return EXIT_FAILURE; }
double a = 1.123123123;
outfile << "Just string" << endl;
outfile << setprecision(20) << a << endl;
return O;

18

String streams

Already known streams:

m Standard output: cerr, cout

= Standard input: cin

® Filestreams: fstream, ifstream, ofstream

New type of stream: stringstream

= Combine int, double, string, etc. into a
single string

® Break up strings into int, double, string
etc.

19

#include <iomanip>
#include <iostream>
#include <sstream>
using namespace std;
int main() {
stringstream s_out;
string ext = ".txt", file_name = "";
for (int i 0; i < 500; ++i) {
// Combine variables into a stringstream.
s_out << setw(5) << setfill('0') << i << ext;
file_name = s_out.str(); // Get a string.

s_out.str(""); // Empty stream for next iteration.

cerr << file_name << endl;
}
stringstream s_in(file_name) ;
int i; string rest;
s_in >> i >> rest;
cerr << "Number: " << i << " rest is: " << rest;
return O;

20

CMake find_path and find_library

We can use an external library
Need headers and binary library files
There is an easy way to find them

Headers:

find_path (SOME_PKG_INCLUDE_DIR include/some_file.h
<path1l> <path2> ...)
include_directories (${SOME_PKG_INCLUDE_DIR})

m Libraries:

find_library (SOME_LIB

NAMES <some_1lib>

PATHS <pathl> <path2> ...)
target_link_libraries(target ${SOME_LIB})

21

find_package

m find_package calls multiple find_path and
find_library functions

m To use find_package (<pkg>) CMake must
have a file Find<pkg>.cmake in
CMAKE_MODULE_PATH folders

® Find<pkg>.cmake defines which libraries and
headers belong to package <pkg>

m Pre-defined for most popular libraries,
e.g. OpenCV, libpng, etc.

22

CMakeLists.txt

cmake minimum_required (VERSION 2.8)
project(first_project)

CMake will search here for Find<pkg>.cmake files
SET (CMAKE_MODULE_PATH
${PROJECT_SOURCE_DIR}/cmake_modules)

Search for Findsome_pkg.cmake file and load it
find_package (some_pkg)

Add the include folders from some_pkg
include_directories (${some_pkg INCLUDE_DIRS})

Add the executable "main"

add_executable (main small_main.cpp)

Tell the linker to bind these binary objects
target_link_ libraries(main ${some_pkg LIBRARIES})

23

cmake_modules/Findsome_pkg.cmake

Find the headers that we will need

find_path(some_pkg_ INCLUDE_DIRS include/some_lib.h
<FOLDER_WHERE_TO_SEARCH>)

message (STATUS "headers: ${some_pkg_ INCLUDE_DIRS}")

Find the corresponding libraries
find_library(some_pkg_ LIBRARIES

NAMES some_lib_name

PATHS <FOLDER_WHERE_TO_SEARCH>)
message (STATUS "libs: ${some_pkg LIBRARIES}")

24

References

= Fluent C++: structs vs classes:
https://goo.gl/NFo8HP [shortened]

25

https://goo.gl/NFo8HP

	Classes
	Polymorphism

	I/O
	Stringstreams
	CMake find_package

