Modern C++ for
Computer Vision and
Image Processing

Igor Bogoslavskyi

UNIVERSITAT



Outline

Using pointers

Pointers are polymorphic
Pointer “this”

Using const with pointers
Stack and Heap

Memory leaks and dangling pointers
Memory leak
Dangling pointer
RAII



Using pointers in real worid



Using pointers for classes

= Pointers can point to objects of custom
classes:

std::vector<int> vector_int;
std::vector<int>* vec_ptr = &vector_int;
MyClass obj;

MyClass* obj_ptr = &obj;

= Call object functions from pointer with ->

MyClass obj;

obj .MyFunc () ;

MyClass* obj_ptr = &obj;
obj_ptr->MyFunc () ;

® obj->Func() < (*obj).Func()



Pointers are polymorphic

m Pointers are just like references, but have
additional useful properties:
= Can be reassigned
= Can point to “nothing” (nullptr)
= Can be stored in a vector or an array

= Use pointers for polymorphism

Derived derived;
Base* ptr = &derived;

= Example: for implementing strategy store
a pointer to the strategy interface and
initialize it with nullptr and check if it is set
before calling its methods



#include <iostream>
#include <vector>
using std::cout;
struct AbstractShape {

virtual void Print() const = 0;
};
struct Square : public AbstractShape {

void Print() const override { cout << "Square\n"; }
};
struct Triangle : public AbstractShape {

void Print() const override { cout << "Triangle\n"; }
};

int main() {
std::vector<AbstractShape*> shapes;
Square square;
Triangle triangle;
shapes.push_back (&square) ;
shapes.push_back(&triangle);
for (const auto* shape : shapes) { shape->Print(); }
return O;



this pointer

= Every object of a class or a struct holds a
pointer to itself

» This pointer is called this
= Allows the objects to:
m Return a reference to themselves: return #*this;
= Create copies of themselves within a function
= Explicitly show that a member belongs to the
current object: this->x();



Using const with pointers

Pointers can point to a const variable:

// Cannot change value, can reassign pointer.
const MyType* const_var_ptr = &var;
const_var_ptr = &var_other;

Pointers can be const:

// Cannot reassign ponter, can change value.
MyType* const var_const_ptr = &var;
var_const_ptr->a = 10;

Pointers can do both at the same time:

// Cannot change in any way, read-only.
const MyType* const const_var_const_ptr = &var;

Read from right to left to see which const
refers to what



Stack and heap



Memory management structures

Working memory is divided into two parts:

Stack and Heap

stack heap

http://www.freestockphotos.biz https://pixabay.com

10



Stack memory

= Static memory

= Available for short term storage (scope)
Small / limited (8 MB Linux typisch)
Memory allocation is fast

LIFO (Last in First out) structure

Items added to top of the stack with push
Items removed from the top with pop

11



Stack memory

stack frame
10

#include <stdio.h>

int main(int argc, char const* argv[]) {
int size = 2;
int* ptr = nullptr;
{

int arl[sizel;
ar [0] = 42;
ar[1] 1&g
ptr = ar;

}
for (int i = 0; i < size; ++i) {
printf ("%d\n", ptrl[il);

}

return O;

o = N W b U1 O N O VO

command: 2 x pop()



Heap memory

= Dynamic memory
= Available for long time (program runtime)

= Raw modifications possible with new and
delete (usually encapsulated within a class)

m Allocation is slower than stack allocations

13



Operators new and new[]

NI
HORROR

= User controls memory allocation (unsafe)
® Use new to allocate data:

// pointer variable stored on stack

int* int_ptr = nullptr;

// 'new' returns a pointer to memory in heap
int_ptr = new int;

// also works for arrays

float* float_ptr = nullptr;

// 'new' returns a pointer to an array on heap
float_ptr = new float[number];

= new returns an address of the variable on
the heap
= Prefer using smart pointers!

14



Operators delete and deletel[]

NI
HORROR

= Memory is not freed automatically!
m User must remember to free the memory
m Use delete Or delete[] to free memory:

int* int_ptr = nullptr;

int_ptr = new int;

// delete frees memory to which the pointer points
delete int_ptr;

// also works for arrays

float* float_ptr = nullptr;

float_ptr = new float [number];

// make sure to use 'delete[]' for arrays
delete[] float_ptr;

= Prefer using smart pointers!



Example: heap memory ’
#include <iostream>
using std::cout; using std::endl;
int main() {
int size = 2; int* ptr = nullptr;
{
ptr = new int[size];
ptr[0] = 42; ptr[1] = 13;
} // End of scope does not free heap memory!
// Correct access, variables still in memory.

for (int i = 0; i < size; ++i) {
cout << ptr[i] << endl;

}

delete[] ptr; // Free memory.

for (int i = 0; i < size; ++i) {

// Accessing freed memory. UNDEFINED!
cout << ptr[i] << endl;
}

return O;

16



Possible issues with memory



Memory leak

= Can happen when working with Heap
memory if we are not careful

= Memory leak: memory allocated on Heap
access to which has been lost

18



Memory leak (delete) ’

#include <iostream>
using std::cout; using std::endl;
int main() A{
double *ptr_1
double *ptr_2
int size = 10;
// Allocate memory for two arrays on the heap.
ptr_1 = new double[size];
ptr_2 = new double[size];
cout << "1: " << ptr_1 << " 2: " << ptr_2 << endl;
ptr_2 = ptr_1;
// ptr_2 overwritten, no chance to access the memory.
cout << "1: " << ptr_1 << " 2: " << ptr_2 << endl;
delete[] ptr_1;
delete[] ptr_2;
return O;

NULL;
NULL;

19



Error: double free or corruption

ptr_1: 0x10a3010, ptr_2: 0x10a3070

ptr_1: 0x10a3010, ptr_2: 0x10a3010

xx* Error: double free or corruption (fasttop): O
x00000000010a3010 **x

= The memory under address 0x10a3070 is
never freed

m Instead we try to free memory under
0x10a3010 twice

= Freeing memory twice is an error

20



Memory leak example 75 A

CODING
3 . HORROR
#include <iostream>

#include <cmath>
#include <algorithm>
using std::cout; using std::endl;
int main() {
double *data = nullptr;
size_t size = pow(1024, 3) / 8; // Produce 1GB
for (int i = 0; i < 5; ++i) {
// Allocate memory for the data.
data = new doublel[size];
std::fill (data, data + size, 1.23);
// Do some important work with the data here.
cout << "Iteration: " << i << " done!" << endl;
}
// This will only free the last allocation!
delete[] data;
int unused; std::cin >> unused; // Wait for user.
return O0;

21



Memory leak example

= If we run out of memory an std: :bad_alloc
error is thrown

m Be careful running this example, everything
might become slow

Iteration:
Iteration:
Iteration:
Iteration:

terminate

done!
done!

N —» O

done'!
3 done!
called after throwing an instance of 'std::

bad_alloc'

what () :

std::bad_alloc

22



Dangling pointer

int* ptr_1 = some_heap_address;

int* ptr_2 = some_heap_address;

delete ptr_1;

ptr_1 = nullptr;

// Cannot use ptr_2 anymore! Behavior undefined!

23



Dangling pointer

= Dangling Pointer: pointer to a freed
memory

= Think of it as the opposite of a memory leak

» Dereferencing a dangling pointer causes
undefined behavior

24



Dangling pointer example

#include <

using std:

int main ()
int size
int *ptr
int *ptr
ptr_1[0]
cout <<
cout <<
delete[]
ptr_1 =
cout <<
// Data
cout <<
return O

CODING
HORROR

iostream>

:cout; using std::endl;

{

= 5;
_1 = new int[sizel;
_2 = ptr_1; // Point to same data!

= 100; // Set some data.

"1: " << ptr_1 << " 2: " << ptr_2 << endl;
"ptr_2[0]: " << ptr_2[0] << endl;

ptr_1; // Free memory.
nullptr;

"1: " << ptr_1 << " 2: " << ptr_2 << endl;
under ptr_2 does not exist anymore!
"ptr_2[0]: " << ptr_2[0] << endl;

’

W AN

25



Even worse when used in
functions somme

#include <stdio.h>
// data processing
int* GenerateData(int size);
void UseDataForGood(const int* const data, int size);
void UseDataForBad(const int* const data, int size);
int main() {
int size = 10;
int* data = GenerateData(size);
UseDataForGood (data, size);
UseDataForBad (data, size);
// Is data pointer valid here? Should we free it?
// Should we use 'delete[]' or 'delete'?
delete[] data; // 7777777777777
return O;

26



Memory leak or %
dangling pointer TS

void UseDataForGood(const int* const data, int size) {
// Process data, do not free. Leave it to caller.

}
void UseDataForBad(const int* const data, int size) {
delete[] data; // Free memory!
data = nullptr; // Another problem - this does
nothing!
}

= Memory leak if nobody has freed the
memory

= Dangling Pointer if somebody has freed
the memory in a function

27



RAII

Resource Allocation Is Initialization.
New object — allocate memory
Remove object — free memory
Objects own their data!

class MyClass {
public:
MyClass () { data_ = new SomeOtherClass; }
~MyClass () {
delete data_;

data_ = nullptr;
}
private:
SomeOtherClass* data_;

};
= Still cannot copy an object of MyClass!!!

28



struct SomeOtherClass {};
class MyClass {
public:
MyClass () { data_ = new SomeOtherClass; }
~MyClass () A
delete data_;
data_ = nullptr;
}
private:
SomeOtherClass* data_;
};
int main() {
MyClass a;
MyClass b(a);
return O;

3

*x*x Error in “raii_example':

double free or corruption: 0x0000000000877c20 **x*

Adilak

CODING
HORROR

29



Shallow vs deep copy

Shallow copy: just copy pointers, not data
Deep copy: copy data, create new pointers

Default copy constructor and assignment
operator implement shallow copying

RAII + shallow copy — dangling pointer
RAII + Rule of All Or Nothing — correct
m Use smart pointers instead!

30



	Using pointers
	Pointers are polymorphic
	Pointer ``this''
	Using const with pointers
	Stack and Heap
	Memory leaks and dangling pointers
	Memory leak
	Dangling pointer
	RAII


